Infrared spectroscopy has wide applications in the medical field, industry, agriculture, and other areas. Although the traditional infrared spectrometers are well developed, they face the challenge of miniaturization and cost reduction. Advances in nanomaterials and nanotechnology offer new methods for miniaturizing spectrometers. However, most research on nanomaterial-based spectrometers is limited to the visible wavelength or near infrared region. Here, we propose an infrared spectrometer based on diffraction gratings and colloidal quantum dot (CQD) homojunction photodetector arrays. Coupled with a Fabry-Perot cavity, the CQD photodetector covers the 1.4–2.5 μm spectral range, with specific detectivity 4.64×1011 Jones at 2.5 μm at room temperature. The assembled spectrometer has 256 channels, with total area 2.8 mm×40 mm. By optimizing the response matrix from machine learning algorithms, the CQD spectrometer shows high-resolution spectral reconstruction with a resolution of approximately 7 nm covering the short-wave infrared.
Thermal quenching has been known to entangle with luminescence naturally, which is primarily driven by a multi-phonon relaxation (MPR) process. Considering that MPR and the phonon-assisted energy transfer (PAET) process may interact cooperatively plays a critical role in conducting the thermal response of luminescence thermometry. Herein, an energy mismatch system of Yb3+/Ho3+/Er3+ co-doped β-NaLuF4 hollow microtubes was delicately proposed to combat thermal quenching of near-infrared (NIR)-II luminescence of Ho3+ via premeditated Er3+-mediated PAET processes under 980 nm excitation. Meanwhile, the mechanism of anti-thermal quenching is attributed to the Er3+ as an energy trap center to facilitate the PAET process, thereby enabling a considerable energy transfer efficiency of over 80% between Er3+ and Ho3+ without Yb3+ ions as sensitizers. Leveraging the accelerated PAET process at increased temperature and superior emission, the phonon-tuned NIR-II ratiometric thermometers were achieved based on fluoride beyond the reported oxide host, enabling excellent relative sensitivity and resolution (Sr=0.57% K-1, δT=0.77 K). This work extends the significant effect of PAET on overcoming the notorious thermal quenching, and offers a unique physical insight for constructing phonon-tuned ratiometric luminescence thermometry.
We demonstrate the spectroscopy of incoherent light with subdiffraction resolution. In a proof-of-principle experiment, we analyze the spectrum of a pair of incoherent pointlike sources whose separation is below the diffraction limit. The two sources mimic a planetary system, with a brighter source for the star and a dimmer one for the planet. Acquiring spectral information about the secondary source is difficult because the two images have a substantial overlap. This limitation is solved by leveraging a structured measurement based on spatial-mode demultiplexing, where light is first sorted in its Hermite–Gaussian components in the transverse field then measured by photon detection. This allows us to effectively decouple the photons coming from the two sources. An application is suggested to enhance the exoplanets’ atmosphere spectroscopy. A number of experiments of super-resolution imaging based on spatial demultiplexing have been conducted in the past few years, with promising results. Here, for the first time to the best of our knowledge, we extend this concept to the domain of spectroscopy.
Element doping can break the crystal symmetry and realize the topological phase transition in quantum materials, which enables the precise modulation of energy band structure and microscopic dynamical interaction. Herein, we have studied the ultrafast photocarrier dynamics in Zn-doped 3D topological Dirac semimetal Cd3As2 utilizing time-resolved optical pump-terahertz probe spectroscopy. Comparing to the pristine Cd3As2, we found that the relaxation time of the lightly doped alloy is slightly shorter, while that of the heavily doped alloy exhibits a significant prolongation. Pump-fluence- and temperature-dependent transient terahertz spectroscopy indicated that in pristine and lightly doped samples within nontrivial semimetal phase, the photocarrier dynamics are dominated by the cooling of Dirac fermions. In heavily doped alloy, however, the observed longer relaxation process can be attributed to interband electron-hole recombination, which is a result of doping-induced transition into a trivial semiconductor phase. Our investigation highlights that Zn-doping is an effective and flexible scheme for engineering the electronic structure and transient carrier relaxation dynamics in Cd3As2, and offers a control knob for functional switching between diverse optoelectronic devices within the realm of practical applications.
We demonstrate a dual-wavelength optical frequency standard based on the dual-optical-transition modulation transfer spectroscopy (DOT-MTS) between different quantum transitions of the rubidium D1 (795 nm) and D2 (780 nm) lines. In a single rubidium atomic ensemble, modulation frequency sidebands from the 780 nm pump beam are simultaneously transferred to both the 780 and 795 nm probe lasers. The DOT-MTS enables the simultaneous stabilization of 780 and 795 nm lasers on a single vapor cell. Both lasers exhibit a frequency instability in the low 10-14 range at 1 s of averaging, as estimated from the residual error signal. A theoretical model is developed based on the V-type atomic level structure to illustrate the dual-wavelength spectroscopy. This approach can be extended to develop a multi-wavelength optical frequency standard within a single atomic ensemble, broadening its applicability in fields such as precision metrology, Rydberg atoms, wavelength standards, optical networks, and beyond.
We present a differential laser absorption spectroscopy (DLAS) system operating at 1550 nm for rapid and sensitive gas concentration measurements. A dual-wavelength toggling mechanism is presented, which significantly reduces data processing, hence supporting a high update rate and data robustness against fast-changing environmental conditions. We showcase the ability to toggle between two wavelengths separated by 90 pm in 14 μs and with minimal chirp (∼1 pm), facilitating sensitive DLAS measurements at 8 kHz update rate. This performance is achieved by driving a 1550 nm diode laser with a modified square-wave current pulse, overcoming the thermal time constant limited wavelength-modulation response of the diode laser. A sensitive feedback mechanism ensures excellent long-term wavelength stability better than 1.4 pm peak-to-peak at 8 kHz toggling over 20 h. As a performance test, we measured the volumetric ratio (VMR) of hydrogen cyanide (HCN) gas in a fiber-coupled gas cell with less than 0.2% peak-to-peak variation over 20 h at 40 Hz. A best sensitivity in VMR of 8×10-6 was achieved at 25 ms integration time. The simplicity and high update rate of our system make it well-suited for gas monitoring in dynamic atmospheric and industrial environments. Further, it offers potential utility in applications requiring precise wavelength control, such as injection seeding of pulsed lasers. A simple analytical model is derived, which, in detail, supports the experimental results, hence offering a tool for future design optimization.
Time dilation constitutes a crucial aspect of Lorentz invariance within special relativity and undergoes constant scrutiny through numerous Ives-Stilwell-type experiments employing the Doppler effect. In our study, we employed optical Ramsey spectroscopy on a Li+ ion beam to enhance the precision of measuring the intrinsic transition frequency 23S1-23P2 to the level of four parts in 1010 with speed of 0.00035c. Our findings reconciled an existing 2 MHz disparity between collinear and perpendicular laser spectroscopy. Furthermore, in conjunction with previous studies on Li+ ion beams traveling at speeds of 0.064c and 0.338c [Nat. Phys.3, 861 (2007)NPAHAX1745-247310.1038/nphys778; Phys. Rev. Lett.113, 120405 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.120405], we updated the Robertson-Mansouri-Sexl parameter α^ to be (-10.0±9.9)×10-8 and (-2.9±2.0)×10-8, respectively.
A hydrogen (H2)-enhanced light-induced thermoelastic spectroscopy (LITES) sensor is proposed for the first time, to our knowledge, in this paper. The enhancement with H2 significantly reduces the resonance damping of a quartz tuning fork (QTF), leading to a 2.5-fold improvement in the quality factor (Q-factor) to 30,000 without introducing additional noise into the LITES sensor system. Based on the H2-enhancement effect, a self-designed round-head QTF with a low resonance frequency (f0) of 9527 Hz and a fiber coupled multipass cell (MPC) with an optical length of 40 m were utilized to increase the energy accumulation time of QTF and the optical absorption of the target gas, respectively, to demonstrate an ultra-highly sensitive C2H2-LITES sensor. The long-term stability of the H2-enhanced C2H2-LITES sensor was investigated based on Allan deviation analysis. With an optimal integration time of 140 s, the minimum detection limit (MDL) was improved to 290 parts per trillion (ppt). Compared to other reported state-of-the-art C2H2-LITES techniques with similar parameters, this sensor shows a 241-fold improvement in the MDL. This H2-enhancement technique proves to be a highly effective method for achieving a high Q-factor QTF, characterized by its simplicity and efficiency. It offers substantial potential for applications in QTF-based gas sensing.
The terahertz (THz) absorption spectrum is a powerful method to identify substances. The improvement focuses on sensitivity and recovery ability. Here, we demonstrate enhanced THz vibrational absorption spectroscopy based on an on-chip THz whispering gallery mode resonator (THz-WGMR). A THz-WGMR with high Q can store energy and enhance the interaction between the THz waves and the target substances to capture the unique absorption fingerprint information. Therefore, it possesses significant sensitivity to identify trace amounts of substances. As a proof of concept, lactose powder and glucose powder are applied to demonstrate the effectiveness of our approach in recovering fingerprint absorption spectroscopy. Compared with a straight waveguide, the high sensitivity of the THz-WGMR is illustrated. The change of the transmissivity caused by the lactose reaches 7.8 dB around 532 GHz for the THz-WGMR, while only 1.4 dB for the straight waveguide, demonstrating the state-of-the-art sensing performance in fingerprint absorption recovery. We believe the proposed integrated THz-WGMR will promote the THz identification of tiny fingerprint substances.
Rapid detection of pathogens present on contaminated surfaces is crucial for food safety and public health due to the high morbidity and mortality of bacterial infections. Herein, a sensitive and efficient method for on-site identification of foodborne pathogens on anisotropic surfaces was developed by using an in situ instantaneously prepared surface-enhanced Raman scattering (SERS) platform. To achieve this, molybdenum-doped gallic acid-derived carbon dots (MCDs) are utilized as the reductant for synthesizing Au@MCDs nanohybrids within just 3 s at ambient temperature. The synergistic effect of the electromagnetic enhancement and charge transfer of Au@MCDs enables excellent SERS performance 10 times stronger than bare Au NPs. The bioassay platform requires less than 5 min to complete the quantitative detection of foodborne pathogens on various microbial-contaminated interfaces with a sensitivity of 10 CFU/mL. This innovative strategy breaks the long-standing limitations of SERS substrates in practical use, such as the time-consuming process, interference of residual surfactants, poor surface stability, and few application scenarios, providing a promising tool for widespread applications in biomedical research and clinical diagnostics.
Brillouin microscopy, which maps the elastic modulus from the frequency shift of scattered light, has evolved to a faster speed for the investigation of rapid biomechanical changes. Impulsive stimulated Brillouin scattering (ISBS) spectroscopy has the potential to speed up measurement through the resonant amplification interaction from pulsed excitation and time-domain continuous detection. However, significant progress has not been achieved due to the limitation in signal-to-noise ratio (SNR) and the corresponding need for excessive averaging to maintain high spectral precision. Moreover, the limited spatial resolution also hinders its application in mechanical imaging. Here, by scrutinizing the SNR model, we design a high-speed ISBS microscope through multi-parameter optimization including phase, reference power, and acquisition time. Leveraging this, with the further assistance of the Matrix Pencil method for data processing, three-dimensional mechanical images are mapped under multiple contrast mechanisms for a millimeter-scale polydimethylsiloxane pattern immersed in methanol, enabling the identification of these two transparent materials without any contact or labeling. Our experimental results demonstrate the capability to maintain high spectral precision and resolution at a sub-millisecond integration time for one pixel. With a two-order improvement in the speed and a tenfold improvement in the spatial resolution over the state-of-the-art systems, this method makes it possible for ISBS microscopes to sensitively investigate rapid mechanical changes in time and space.
Tunable lasers, with the ability to continuously vary their emission wavelengths, have found widespread applications across various fields such as biomedical imaging, coherent ranging, optical communications, and spectroscopy. In these applications, a wide chirp range is advantageous for large spectral coverage and high frequency resolution. Besides, the frequency accuracy and precision also depend critically on the chirp linearity of the laser. While extensive efforts have been made on the development of many kinds of frequency-agile, widely tunable, narrow-linewidth lasers, wideband yet precise methods to characterize and linearize laser chirp dynamics are also demanded. Here we present an approach to characterize laser chirp dynamics using an optical frequency comb. The instantaneous laser frequency is tracked over terahertz bandwidth at 1 MHz intervals. Using this approach we calibrate the chirp performance of 12 tunable lasers from Toptica, Santec, New Focus, EXFO, and NKT that are commonly used in fiber optics and integrated photonics. In addition, with acquired knowledge of laser chirp dynamics, we demonstrate a simple frequency-linearization scheme that enables coherent ranging without any optical or electronic linearization unit. Our approach not only presents novel wideband, high-resolution laser spectroscopy, but is also critical for sensing applications with ever-increasing requirements on performance.
In the field of quantum metrology, transition matrix elements are crucial for accurately evaluating the black-body radiation shift of the clock transition and the amplitude of the related parity-violating transition, and can be used as probes to test quantum electrodynamic effects, especially at the 10-3–10-4 level. We developed a universal experimental approach to precisely determine the dipole transition matrix elements by using the shelving technique, for the species where two transition channels are involved, in which the excitation pulses with increasing duration were utilized to induce shelving, and the resulting shelving probabilities were determined by counting the scattered photons from the excited P1/22 state to the S1/22 ground state. Using the scattered photons offers several advantages, including insensitivity to fluctuations in magnetic field, laser intensity, and frequency detuning. An intensity-alternating sequence to minimize detection noise and a real-time approach for background photon correction were implemented in parallel. We applied this technique to a single Yb+ ion, and determined the 6p P1/22-5d D23/2 transition matrix element 2.9979(20) ea0, which indicates an order of magnitude improvement over existing reports. By combining our result with the 6p P1/22 lifetime of 8.12(2) ns, we extracted the 6s S1/22-6p P1/22 transition matrix element to be 2.4703(31) ea0. The accurately determined dipole transition matrix elements can serve as a benchmark for the development of high-precision atomic many-body theoretical methods.
Dual-comb spectroscopy (DCS) has revolutionized numerous spectroscopic applications due to its high spectral resolution and fast measurement speed. Substantial efforts have been made to obtain a coherent dual-comb source at various spectral regions through nonlinear frequency conversion, where the preservation of coherence has become a problem of great importance. In this study, we report the generation of coherent dual-comb sources covering from the ultraviolet to mid-infrared region based on high-order harmonic generation. Driven by high-repetition-rate femtosecond mid-infrared dual-comb pump pulses, up to ninth-order harmonic was generated from the ultraviolet to mid-infrared region using an aperiodically poled lithium niobate waveguide. To investigate the coherence property of the high-order harmonic generation, DCS was performed at every generated spectral region from 450 to 3600 nm. The measured dual-comb spectra with distinctive tooth-resolved structures show the well-preserved coherence without apparent degradation after the cascaded quadratic nonlinear processes. The subsequent methane absorption spectroscopy at multiple spectral regions of different harmonics was carried out to characterize the spectroscopic capability of the system. These results demonstrate the potential of our scheme to generate compact and coherent broadband optical frequency combs for simultaneous multi-target detections.
Measuring magnetic response from spin and current is of fundamental interest in condensed matter physics. Negatively charged nitrogen-vacancy (NV-) centers in diamond are emerging as a robust and versatile quantum sensor owing to their high sensitivity, nanometer-scale spatial resolution, and noninvasive operation with access to static and dynamic magnetic and electron transport properties. In this review, we discuss the rapidly growing interest in the implementation of NV- magnetometry to explore condensed matter physics, focusing on three topics: anti/ferromagnetic materials, superconductors, and metals/semimetals/semiconductors.
Exploiting the time-resolving ability of ultrafast pulses, Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) stands out among the coherent Raman spectroscopic techniques for providing high-speed vibrational spectra with high spectral resolution, high Raman intensity, and immunity to nonresonant background. However, the impulsive stimulation nature of FT-CARS imposes heavy demands on the laser source and makes it inherently difficult to monitor high-frequency vibrations. Here, a novel FT-CARS strategy to our knowledge based on interpulse stimulation is proposed to provide more flexible measuring wavenumber region and lighten the requirement on ultrafast pulses. The mechanism of this technique is analyzed theoretically, and simulation is performed to show an orders-of-magnitude improvement of Raman intensity in the high-wavenumber region by the method. Experimentally, an ytterbium-doped fiber laser and photonic crystal fiber-based solitons are employed to provide two ∼100-fs pulses as the pump and Stokes, respectively, and to perform interpulse stimulation FT-CARS without sophisticated dispersion control devices. The high-wavenumber region and upper-part fingerprint region measurements are demonstrated as examples of flexible measurement. Combined with other rapid scanning techniques, such as resonant scanners or a dual-comb scheme, this interpulse stimulation FT-CARS promises to make the fascinating FT-CARS available for any desired wavenumber region, covering many more realistic scenarios for biomedical, pathological, and environmental research.
Laser absorption spectroscopy (LAS) has been widely used for unambiguous detection and accurate quantification of gas species in a diverse range of fields. However, up-to-date LAS-based gas sensors still face challenges in applications where gas concentrations change in a wide range, since it is extremely difficult to balance spectral analysis strategies for different optical thicknesses. Here we present laser vector spectroscopy that combines absorption spectroscopy with dispersion spectroscopy, simultaneously taking advantage of the former’s high sensitivity in the low-concentration region and the latter’s high linearity in the high-concentration region. In the proof-of-concept demonstration of acetylene measurement, it achieves a linear dynamic range of 6×107 (R2>0.9999), which surpasses all other state-of-the-art LAS techniques by more than an order of magnitude, with the capability of highly accurate quantification retained. The proposed laser spectroscopic method paves a novel way of developing large-dynamic-range gas sensors for environmental, medical, and industrial applications.
The high-detection-sensitivity saturated-absorption cavity ring-down (SCAR) technique is extended to Lamb-dip spectroscopy of rovibrational molecular transitions in the near-infrared region. Frequency-comb-referenced sub-Doppler saturation measurements, performed on the acetylene (ν1+ν3+ν4←ν4) R(14)e line at 6562 cm-1, are analyzed by a SCAR global line profile fitting routine, based on a specially developed theoretical model. Compared to a conventional cavity ring-down evaluation, our approach yields dip profiles with a linewidth freed from saturation broadening effects, reduced by 40%, and a signal-to-noise ratio increased by 90%. Ultimately, an overall (statistical and systematic) fractional uncertainty as low as 7×10-12 is achieved for the absolute line-center frequency. At the same time, our method is also able to accurately infer the linear (non-saturated) behavior of the gas absorption, providing Lamb-dip-based line strength measurements with a relative uncertainty of 0.5%.
We report the ultrafast photocarrier dynamics and coherent phonon excitation in type-II Dirac semimetal platinum ditelluride (PtTe2) thin films via femtosecond (fs) pump-probe spectroscopy at room temperature. Quantitative analysis revealed that the incoherent electronic relaxation consists of two components: a subpicosecond fast relaxation process and a slow component with a time constant of hundreds of picoseconds (ps). Furthermore, the launch of a coherent acoustic phonon (CAP) in the 20 nm film but absence in the 6.8 nm film uncovers the dominant role of temperature gradient in producing a strain wave. The sound velocity and Young’s modulus in the thick PtTe2 are determined to be 1.736 km/s and 29.5 GPa, respectively. In addition, the coherent optical phonon (COP) with a frequency of 4.7 THz corresponding to Te atoms out-of-plane A1g vibration has been well resolved in all films, which is ascribed to displacive excitation of coherent phonon (DECP). The observation of a strong probe-wavelength dependent COP amplitude reveals the resonant feature of the optical excitation-induced atomic displacement in PtTe2. Our findings provide deep insight into the excitation and dynamics of CAP and COP as well as the photocarriers’ recovery pathway and lifetimes in PtTe2. Our study also demonstrates that the COP spectroscopy is a powerful tool to reveal the modulation of frequency-dependent optical constants induced by atomic vibrations, which may find applications in the fields of optoelectronics and ultrafast photonics.
NaYF4:Eu nanorods with high aspect ratios are elaborated and optically trapped using dual fiber optical tweezers in a counterpropagating geometry. High trapping efficiency is observed using converging beams, emitted from diffractive Fresnel lenses directly 3D printed onto cleaved fiber facets. Stable nanorod trapping and alignment are reported for a fiber-to-fiber distance of 200 μm and light powers down to 10 mW. Trapping of nanorod clusters containing one to three nanorods and the coupling of nanorod motion in both axial and transverse directions are considered and discussed. The europium emission is studied by polarization-resolved spectroscopy with particular emphasis on the magnetic and electric dipole transitions. The respective σ and π orientations of the different emission lines are determined. The angles with respect to the nanorod axes of the corresponding magnetic and electric dipoles are calculated. Mono-exponential emission decay with decay time of 4–5 ms is reported. It is shown that the nanorod orientation can be determined by purely spectroscopic means.
Mid-infrared dual-comb spectroscopy is of great interest owing to the strong spectroscopic features of trace gases, biological molecules, and solid matter with higher resolution, accuracy, and acquisition speed. However, the prerequisite of achieving high coherence of optical sources with the use of bulk sophisticated control systems prevents their widespread use in field applications. Here we generate a highly mutually coherent dual mid-infrared comb spectrometer based on the optical–optical modulation of a continuous-wave (CW) interband or quantum cascade laser. Mutual coherence was passively achieved without post-data processes or active carrier envelope phase-locking processes. The center wavelength of the generated mid-infrared frequency combs can be flexibly tuned by adjusting the wavelength of the CW seeds. The parallel detection of multiple molecular species, including C2H2,CH4,H2CO,H2S, COS, and H2O, was achieved. This technique provides a stable and robust dual-comb spectrometer that will find nonlaboratory applications including open-path atmospheric gas sensing, industrial process monitoring, and combustion.
The development of two-dimensional (2D) transition metal dichalcogenides has been in a rapid growth phase for the utilization in surface-enhanced Raman scattering (SERS) analysis. Here, we report a promising 2D transition metal tellurides (TMTs) material, hafnium ditelluride (HfTe2), as an ultrasensitive platform for Raman identification of trace molecules, which demonstrates extraordinary SERS activity in sensitivity, uniformity, and reproducibility. The highest Raman enhancement factor of 2.32×106 is attained for a rhodamine 6G molecule through the highly efficient charge transfer process at the interface between the HfTe2 layered structure and the adsorbed molecules. At the same time, we provide an effective route for large-scale preparation of SERS substrates in practical applications via a facile stripping strategy. Further application of the nanosheets for reliable, rapid, and label-free SERS fingerprint analysis of uric acid molecules, one of the biomarkers associated with gout disease, is performed, which indicates arresting SERS signals with the limits of detection as low as 0.1 mmol/L. The study based on this type of 2D SERS substrate not only reveals the feasibility of applying TMTs to SERS analysis, but also paves the way for nanodiagnostics, especially early marker detection.
Laser absorption spectroscopy (LAS) has become the most widely used laser spectroscopic technique for gas detection due to its capability of accurate quantification and straightforward operation. However, since resolving weak absorption and averting over-absorption are always mutually exclusive, the dynamic range of the LAS-based gas sensor is limited and insufficient for many applications in fundamental study and industry. To overcome the limitation on the dynamic range, this article reports optical pathlength (OPL) multiplexed absorption spectroscopy using a gas cell having multiple internal reflections. It organically fuses together the transmission and reflection operation modes: the former directly uses the entire OPL of the gas cell, while the latter interrogates different internal short OPLs by optical interferometry, yielding >100-fold OPL variation. The achieved dynamic range is more than 6 orders of magnitude that surpasses other LAS techniques by 2–3 orders of magnitude. The proposed method promotes a novel way for the development of large-dynamic-range spectroscopic gas sensors for fundamental studies and industrial applications.
We present an experimental setup capable of time-resolved photoluminescence spectroscopy for photon energies in the range of 0.51 to 0.56 eV with an instrument time response of 75 ps. The detection system is based on optical parametric three-wave mixing, operates at room temperature, has spectral resolving power, and is shown to be well suited for investigating dynamical processes in germanium-tin alloys. In particular, the carrier lifetime of a direct-bandgap Ge1?xSnx film with concentration x=12.5% and biaxial strain ?0.55% is determined to be 217±15 ps at a temperature of 20 K. A room-temperature investigation indicates that the variation in this lifetime with temperature is very modest. The characteristics of the photoluminescence as a function of pump fluence are discussed.
Tip-enhanced Raman scattering (TERS) spectroscopy is a nondestructive and label-free molecular detection approach that provides high sensitivity and nanoscale spatial resolution. Therefore, it has been used in a wide array of applications. We demonstrate a gap-plasmon hybridization facilitated by a bottom-illuminated TERS configuration. The gap-plasmon hybridization effect is first performed with the finite-difference time-domain method to optimize the parameters, and experiments are then conducted to calibrate the performance. The results demonstrate an enhancement factor of 1157 and a spatial resolution of 13.5 nm. The proposed configuration shows great potential in related surface imaging applications in various fields of research.
The determination of airflow parameters is essential to the research of critical information on environment monitoring, chemical kinetics, and aerodynamic and propulsion applications. During the past few decades, tunable diode laser absorption spectroscopy has become a common and efficient tool for the flow velocity measurement based on the Doppler shift of the absorption line. Dual-comb absorption spectroscopy (DCAS), as a state-of-the-art Fourier-transform broadband spectroscopic technique, not only can detect multiple trace molecules in parallel but also can extract Doppler shifts to derive the flow velocity through the analysis of dozens of molecular absorption lines simultaneously with high precision. Here, we report a proof-of-principle demonstration of the velocity measurements of acetylene at various flow velocities by means of a high-resolution and broadband DCAS. Mode-resolved Doppler-shifted rotational-vibrational lines in the P branch of acetylene molecules are obtained. A model for multiline Doppler frequency determination is investigated and experimentally verified. The flow velocity measurements with a measuring uncertainty down to the submeter per second over the range from 8.7 m/s to 44.8 m/s at an effective time resolution of 1 s and a measuring uncertainty of 1.97 m/s at 0.1 s are demonstrated. With broadband mid-infrared frequency combs covering atmospheric transmission windows, the open-path measurement for monitoring diffusion of the weak pollutant source would be realized.
Resolution and bandwidth are critical for cavity-enhanced dual-comb spectroscopy (CE-DCS). Here, we pioneer an adaptive approach in CE-DCS to improve the broadband as well as the resolution. Postcorrections to dual-comb interferograms adaptively compensate the relative phase jitters of the optical frequency combs and result in both a mode-resolved spectral resolution and a signal-to-noise ratio of 440:1 in 1 s. Meanwhile, an adaptive comb-cavity locking scheme exploits more than 90% of the comb modes, covering 340 cm 1 (10 THz) at 6450 cm 1. For a single dual-comb interferogram, more than 40,000 comb teeth spaced by 250 MHz are measured in less than 7.5 ms, contributing to a noise equivalent absorption per spectral element of 2×10 10 cm 1 ·Hz 1/2. This adaptive cavity-enhanced dual-comb spectroscopy technique provides an attractive spectroscopic tool that may be utilized in trace-gas sensing, breath and cancer analysis, and engine combustion diagnosis.
In this work, a model based on the optical rectification effect and the photocurrent surge effect is proposed to describe the terahertz emission mechanism of the layered GaTe crystal. As a centrosymmetric crystal, the optical rectification effect arises from the breaking of the inversion symmetry due to lattice reorganization of the crystal’s surface layer. In addition, the photocurrent surge originating from the unidirectional charge carrier diffusion—due to the noncubic mobility anisotropy within the layers—produces terahertz radiation. This is confirmed by both terahertz emission spectroscopy and electric property characterization. The current surge perpendicular to the layers also makes an important contribution to the terahertz radiation, which is consistent with its incident angle dependence. Based on our results, we infer that the contribution of optical rectification changes from 90% under normal incidence to 23% under a 40° incidence angle. The results not only demonstrate the terahertz radiation properties of layered GaTe bulk crystals, but also promise the potential application of terahertz emission spectroscopy for characterizing the surface properties of layered materials.
In this work, we show how fiber-based terahertz systems can be robustly configured for accurate terahertz ellipsometry. To this end, we explain how our algorithms can be successfully applied to achieve accurate spectroscopic ellipsometry with a high tolerance on the imperfect polarizer extinction ratio and pulse shift errors. Highly accurate characterization of transparent, absorptive, and conductive samples comprehensively demonstrates the versatility of our algorithms. The improved accuracy we achieve is a fundamental breakthrough for reflection-based measurements and overcomes the hurdle of phase uncertainty.
X-ray absorption spectroscopy is proposed as a method for studying the heating of solid-density matter excited by secondary X-ray radiation from a relativistic laser-produced plasma. The method was developed and applied to experiments involving thin silicon foils irradiated by 0.5–1.5 ps duration ultrahigh contrast laser pulses at intensities between 0.5×1020 and 2.5×1020 W/cm2. The electron temperature of the material at the rear side of the target is estimated to be in the range of 140–300 eV. The diagnostic approach enables the study of warm dense matter states with low self-emissivity.
Raman spectroscopy is a versatile tool widely used for comprehensive probing of crystal information. However, generally when applied in narrow-band-gap van der Waals crystals, it is liable to form a “bug,” especially in transition-metal-dichalcogenides (TMDs). That is, several resonant Raman-scattering (RS) modes will inevitably appear in the Raman spectra with strong intensity, interfering with the desired signal of optical-phonon modes. Here, we propose cross-sectional polarized Raman scattering capable of regulating the intensity of RS modes in accordance with quasi-sinusoidal rules. Typically, for MoS2 and WS2, when the polarization vector of excited light is along the c axis of the crystal, all RS modes are nearly completely “expunged” from the Raman spectra. The mechanism is that the absorption of most TMDs with a space group of R3m for the light polarized along the c axis is infinitesimal, thus forming a small coupling intensity of electronic states excited optically and acoustic-phonon modes at point M, which in turn restrain the appearance of RS modes. The regulating strategy proposed can be applied to other van der Waals crystals so as to obtain a high signal-to-noise ratio Raman spectrum.
Probing the optical properties of molybdenum disulfide (MoS2) is vital to its application in plasmon-enhanced spectroscopy, catalysts, sensing, and optoelectronic devices. In this paper, we theoretically studied the Raman and fluorescence properties of monolayer MoS2 using tip-enhanced spectroscopy (TES). In the strong-coupling TES system, the Raman and fluorescence enhancement factors can be turned to as high as 4.5×108 and 3.3×103, respectively, by optimizing the tip–MoS2-film distance. Our theoretical results not only help to deeply understand the TES properties of monolayer MoS2, but also provide better guidance on the applications of the novel two-dimensional material.
A blind deconvolution algorithm with modified Tikhonov regularization is introduced. To improve the spectral resolution, spectral structure information is incorporated into regularization by using the adaptive term to distinguish the spectral structure from other regions. The proposed algorithm can effectively suppress Poisson noise as well as preserve the spectral structure and detailed information. Moreover, it becomes more robust with the change of the regularization parameter. Comparative results on simulated and real degraded Raman spectra are reported. The recovered Raman spectra can easily extract the spectral features and interpret the unknown chemical mixture.